Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions.

Colloids Surf B Biointerfaces

Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil. Electronic address:

Published: June 2014

Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/βCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and βCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/βCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of βCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/βCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/βCD compared with free DOX. These promising findings demonstrate the potential for DOX/βCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.01.028DOI Listing

Publication Analysis

Top Keywords

structural thermodynamic
8
free dox
8
dox dox/βcd
8
hydrogen bonding
8
dox
6
dox/βcd
5
aureus
5
thermodynamic characterization
4
characterization doxycycline/β-cyclodextrin
4
doxycycline/β-cyclodextrin supramolecular
4

Similar Publications

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

The abandoned coal in goaf will adsorb the gases ethylene (CH) and acetylene (CH) produced by coal oxidation, which makes the concentration data of the indicator gas inaccurate. Therefore, the adsorption law of coal and CH and CH gas is explored. The macromolecular structure model of coal was established and optimized by simulation, and the gas adsorption process was simulated by means of grand canonical Monte Carlo method.

View Article and Find Full Text PDF

Photocatalytic asymmetric C-C coupling for CO reduction on dynamically reconstructed Ru-O/Ru-O sites.

Nat Commun

January 2025

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada.

Solar-driven CO reduction to value-added C chemicals is thermodynamically challenging due to multiple complicated steps. The design of active sites and structures for photocatalysts is necessary to improve solar energy efficiency. In this work, atomically dispersed Ru-O sites in RuInO are constructed by interior lattice anchoring of Ru.

View Article and Find Full Text PDF

Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies.

Int J Biol Macromol

January 2025

Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India. Electronic address:

This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored.

View Article and Find Full Text PDF

Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!