Primary central nervous system (CNS) atypical teratoid/rhabdoid tumor (ATRT) is an extremely malignant pediatric brain tumor observed in infancy and childhood. It has been reported that a subpopulation of CD133(+) cells isolated from ATRT tumors present with cancer stem-like and radioresistant properties. However, the exact biomolecular mechanisms of ATRT or CD133-positive ATRT (ATRT-CD133(+)) cells are still unclear. We have previously shown that ATRT-CD133(+) cells have pluripotent differentiation ability and the capability of malignant cells to be highly resistant to ionizing radiation (IR). By using microRNA array and quantitative RT-PCR in this study, we showed that expression of miR142-3p was lower in ATRT-CD133(+) cells than in ATRT-CD133(-) cells. miR142-3p overexpression significantly inhibited the self-renewal and tumorigenicity of ATRT-CD133(+) cells. On the contrary, silencing of endogenous miR142-3p dramatically increased the tumor-initiating and stem-like cell capacities in ATRT cells or ATRT-CD133(-) cells and further promoted the mesenchymal transitional and radioresistant properties of ATRT cells. Most importantly, therapeutic delivery of miR142-3p in ATRT cells effectively reduced its lethality by blocking tumor growth, repressing invasiveness, increasing radiosensitivity, and prolonging survival time in orthotropic-transplanted immunocompromised mice. These results demonstrate the prospect of developing novel miRNA-based strategies to block the stem-like and radioresistant properties of malignant pediatric brain cancer stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368914X678364DOI Listing

Publication Analysis

Top Keywords

radioresistant properties
16
atrt-cd133+ cells
16
malignant pediatric
12
pediatric brain
12
cells
12
atrt cells
12
properties malignant
8
stem-like radioresistant
8
cells atrt-cd133-
8
atrt-cd133- cells
8

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.

View Article and Find Full Text PDF

The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells.

View Article and Find Full Text PDF

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

Background: Cancer stem cells (CSCs) constitute a small and elusive subpopulation of cancer cells within a tumor mass and are characterized by stem cell properties. Reprogrammed CSCs exhibit similar capability to initiate tumor growth, metastasis, and chemo- and radio-resistance and have similar gene profiles to primary CSCs. However, the efficiency of cancer cell reprogramming remained relatively low.

View Article and Find Full Text PDF
Article Synopsis
  • Hypoxic tumors resist radiation due to low oxygen levels, which reduces the effectiveness of therapy; increasing oxygenation during treatment could enhance radiosensitivity.
  • Historical approaches to boost oxygen delivery to tumors have had limited success, but inhibiting cancer cell respiration may yield better results.
  • Research shows that the mitochondria-targeted antioxidant MitoQ can effectively radiosensitize breast tumors in mice, suggesting potential for its use alongside radiotherapy in clinical settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!