Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The 1:2 mixtures of Co(p-tolsal)2, p-tolsal = N-p-tolylsalicylideniminato, and diazo-pyridine ligands, DXpy; X = 1, 2, 3l, 3b, and 4, in MTHF solutions were irradiated at cryogenic temperature to form the corresponding 1:2 cobalt-carbene complexes Co(p-tolsal)2(CXpy)2, with Stotal = 5/2, 9/2, 13/2, 13/2, and 17/2, respectively. The resulting Co(p-tolsal)2(CXpy)2, X = 1, 2, 3l, 3b, and 4, showed magnetic behaviors characteristic of heterospin single-molecule magnets with effective activation barriers, Ueff/kB, of 40, 65, 73, 72, and 74 K, for reorientation of the magnetic moment and temperature-dependent hysteresis loops with a coercive force, Hc, of ∼0, 6.2, 10, 6.5, and 9.0 kOe at 1.9 K, respectively. The relaxation times, τQ, due to a quantum tunneling of magnetization (QTM) were estimated to be 1.6 s for Co(p-tolsal)2(C1py)2, ∼2.0 × 10(3) s for Co(p-tolsal)2(C2py)2, and >10(5) s for Co(p-tolsal)2(CXpy)2; X = 3b, 3l, and 4. In heterospin complexes, organic spins, carbenes interacted with the cobalt ion to suppress the QTM pathway, and the τQ value increased with increasing the Stotal values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic403074d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!