In recent years, specific transportation mechanisms on the blood-brain barrier (BBB) are extensively employed for brain-targeted drug delivery via colloidal nanocarriers. However, in this study, we purposed to exploit the sodium-dependent vitamin C transporter 2 (SVCT2)-mediated transportation on the blood-cerebrospinal fluid barrier to enhance central nervous system penetration of the highly hydrophilic ibuprofen (IBU) by synthesizing a SVCT2-targeted chemical delivery system (CDS), ibuprofen-C6-O-ascorbic acid (IAA). The physicochemical parameters of IAA were determined, and the transporter-mediated transportation mechanism of IAA was explored on a BBB monolayer mode. The overall brain targeting effect of IAA was assayed on mice by measuring the biodistribution of IBU after i.v. administration and calculating the pharmacokinetic parameters and targeting indexes. Results showed that lipophilicity and solubility of IAA was conspicuously improved compared with IBU. At the physiological pH, IAA was stable while in brain homogenates it was easily degraded. Transport studies on the BBB monolayer mode revealed that IAA displayed higher transepithelial permeability than IBU via SVCT2. The biodistribution study in vivo demonstrated that the overall targeting efficiency of IAA was 1.77-fold greater than that of the IBU. In conclusion, the synthetic IAA might be a promising brain-targeted CDS for smuggling small-molecule hydrophilic pharmaceuticals into the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/1061186X.2014.915551 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands.
View Article and Find Full Text PDFInt Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFEnviron Res
January 2025
Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain.
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
Background: Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!