Copper sulfate (CuSO4), micron copper oxide (micron CuO) and nano copper oxide (nano CuO) at different concentrations were, respectively, added to culture media containing Caco-2 cells and their effects on Ctr1, ATP7A/7B, MT and DMT1 gene expression and protein expression were investigated and compared. The results showed that nano CuO promoted mRNA expression of Ctr1 in Caco-2 cells, and the difference was significant compared with micron CuO and CuSO4. Nano CuO was more effective in promoting the expression of Ctr1 protein than CuSO4 and micron CuO at the same concentration. Nano CuO at a concentration of 62.5 μM increased the mRNA expression levels of ATP7A and ATP7B, and the difference was significant compared with CuSO4. The addition of CuSO4 and nano CuO to the culture media promoted the expression of ATP7B proteins. CuSO4 at a concentration of 125 μM increased the mRNA expression level of MT in Caco-2 cells, and the difference was significant compared with nano CuO and micron CuO. Nano CuO at a concentration of 62.5 μM inhibited the mRNA expression of DMT1, and the difference was significant compared with CuSO4 and micron CuO. Thus, the effects of CuSO4, micron CuO and nano CuO on the expression of copper transport proteins and the genes encoding these proteins differed considerably. Nano CuO has a different uptake and transport mechanism in Caco-2 cells to those of CuSO4 and micron CuO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2014.04.004 | DOI Listing |
Nanomaterials (Basel)
January 2025
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
This study optimizes the CuO/GaO heterojunction diodes (HJDs) by tailoring the structural parameters of CuO layers. The hole concentration in the sputtered CuO was precisely controlled by adjusting the Ar/O gas ratio. Experimental investigations and TCAD simulations were employed to systematically evaluate the impact of the CuO layer dimension and hole concentration on the electrical performance of HJDs.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China. Electronic address:
Postharvest fruit decay caused by pathogens is an important factor leading to product waste and economic losses, and fruit coating is considered an effective strategy to solve this problem due to its simple operation and effectiveness. In this study, nano modified chitosan film (CSC) was created by mixing chitosan (CS) and copper oxide nanoparticles (CuO NPs) synthesized using abandoned Ficus carica fruit. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra indicated the formation of intermolecular interactions between CS and CuO NPs in the composite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!