The hyperfine splittings of ground state Be+11 have been measured precisely by laser-microwave double resonance spectroscopy for trapped and laser cooled beryllium ions. The ions were produced at relativistic energies and subsequently slowed down and trapped at mK temperatures. The magnetic hyperfine structure constant of Be+11 was determined to be A11=-2677.302 988(72) MHz from the measurements of the mF-mF'=0-0 field independent transition. This measurement provides essential data for the study of the distribution of the halo neutron in the single neutron halo nucleus Be11 through the Bohr-Weisskopf effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.162502 | DOI Listing |
J Phys Chem A
January 2025
University of Göttingen, Institute for Physical Chemistry, Tammannstraße 6, 37077,Göttingen Germany.
Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Molecular and Materials Science, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.
This paper describes muon spin spectroscopy studies of 12-phosphatetraphene stabilized by a peri-trifluoromethyl group and a meso-aryl substituent. Even though the prepared solution in tetrahydrofuran (THF) was quite dilute (0.060 M) for transverse-field muon spin rotation (TF-µSR) measurements, the π-extended heavier congener of tetraphene presented a pair of signals due to a muoniated radical from which the muon hyperfine coupling constant (hfc) was determined.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!