Insulin resistance reduces sensitivity to Cis-platinum and promotes adhesion, migration and invasion in HepG2 cells.

Asian Pac J Cancer Prev

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China E-mail :

Published: January 2015

The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the instability of HepG2/ IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.7314/apjcp.2014.15.7.3123DOI Listing

Publication Analysis

Top Keywords

adhesion migration
16
migration invasion
16
insulin resistance
12
hepg2 cells
12
cells
11
sensitivity cis-platinum
8
invasion hepg2
8
drug resistance
8
cancer cells
8
hepg2/ir cells
8

Similar Publications

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) hallmarks are amyloid plaques and tau tangles. APOE and TREM2 are the strongest genetic risk factors for AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized to play a central role in amyloid beta clearance and microglia activation in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!