Small molecular imaging probes are often found to be rapidly cleared from the circulation. In order to improve signal to noise ratio (SNR) by high probe accumulation in the target tissue we intended to prolong the presence of the probes in the circulation by exploiting inherent transport mechanisms. Human serum albumin (HSA) is playing an increasingly important role as a drug carrier in clinical settings and drugs directly bound to albumin or attached to albumin binding moieties have been successfully developed for treatment approaches. To optimize the bioavailability of existing fluorescent probes, a hydrophobic affinity tag is installed, which enhances albumin binding. In a first experiment an endothelin-A receptor (ETAR) probe is modified by inserting a trivalent linker, attaching an albumin affinity tag and labeling the conjugate with the fluorescent dye Cy 5.5. The spectroscopic properties of the conjugate are examined by photometer- and fluorometer measurements in comparison to a probe without albumin binding tag. Albumin binding was proven by agarose gel electrophoresis. The affinity towards ETAR was confirmed in vitro by cell binding assays on human fibrosarcoma cells (HT-1080) and in vivo by murine xenograft imaging studies. In vitro, the modified probe retains high target binding in the absence and presence of albumin. Binding could be blocked by predosing with ETAR antagonist atrasentan, proving specificity. The in vivo examinations in comparison to the established probe showed a reduced renal elimination and a prolonged circulation of the tracer resulting in significantly higher signal intensity (SI) at the target and a higher signal-to-noise ratio (SNR) between 3h and 96 h after injection. In summary, we designed a small molecular, non-peptidic fluorescent probe which targets ETAR and reversibly binds to serum albumins. The reversible binding to albumin enhances the biological half-life of the probe substantially and enables near infrared optical imaging of subcutaneous tumors for several days. This approach of reversibly attaching probes to serum albumin may serve as a tool to optimize tracer distribution for more precise target characterization in molecular imaging experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2014.04.053 | DOI Listing |
Chemistry
December 2024
CNRS, Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, FRANCE.
Zinc is an important physiological cation, and its misregulation is implicated in various diseases. It is therefore important to be able to image zinc by non-invasive methods such as Magnetic Resonance Imaging (MRI). In this work, we have successfully synthesized a novel Gd3+-based complex specifically for Zn2+ sensing by MRI.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Benzo[a]pyrene (B[a]P) is a hazardous polycyclic aromatic hydrocarbon that accumulates in several environmental matrices as a result of incomplete combustion. Its presence, carcinogenic properties, and tendency for bioaccumulation provide significant risks to human health and the environment. The objective of this study is to create an immunoassay for the detection of benzo[a]pyrene utilizing immunoglobulin Y antibodies.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFSpinal Cord
December 2024
Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
Study Design: Retrospective study.
Objectives: To check the hypothesis that irisin could mediate systemic metabolic effects of testosterone in men with chronic spinal cord injury (SCI).
Setting: Spinal Unit of the San Raffaele Institute in Sulmona.
ACS Chem Neurosci
December 2024
Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!