Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Behind-the-ear (BTE) processors of cochlear implant (CI) devices offer little to almost no protection from wind noise in most incidence angles. To assess speech intelligibility, eight CI recipients were tested in 3 and 9 m/s wind. Results indicated that speech intelligibility decreased substantially when the wind velocity, and in turn the wind sound pressure level, increased. A two-microphone wind noise suppression strategy was developed. Scores obtained with this strategy indicated substantial gains in speech intelligibility over other conventional noise reduction strategies tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000385 | PMC |
http://dx.doi.org/10.1121/1.4871583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!