Understanding the molecular recognition process of nucleobases is one of the greatest challenges for both computational chemistry and biophysics fields. In fact, our results point out that it is a hard task to take into account the hydrophobic interactions, such as π-π and T-stacking interactions, by theoretical calculations using conventional force fields due to quantum effects of hyperconjugation and electronic correlation. In this line, our findings put in evidence that simple modifications in the Lennard-Jones potential can improve theoretical predictions in scenarios where hydrophobic interactions can drive the molecular recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp411230wDOI Listing

Publication Analysis

Top Keywords

molecular recognition
12
hydrophobic interactions
8
hydrophobic noncovalent
4
interactions
4
noncovalent interactions
4
interactions inosine-phenylalanine
4
inosine-phenylalanine theoretical
4
theoretical model
4
model investigating
4
investigating molecular
4

Similar Publications

Point-of-care testing of methotrexate using a controlled release sensor based on a personal glucose meter.

Anal Methods

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.

Methotrexate (MTX), a widely administered medication for treating an array of tumors and autoimmune disorders, necessitates stringent monitoring due to the potential for severe adverse effects associated with its high dosage. Nevertheless, the existing methods for monitoring MTX are often intricate, time-consuming and incur significant costs. In this work, we constructed a controlled release sensor, harnessing the versatility of a personal glucose meter (PGM), which had been devised for the swift detection of MTX.

View Article and Find Full Text PDF

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs).

View Article and Find Full Text PDF

Genome-wide analyses of various taxa have repeatedly shown that immune genes are important targets of positive selection. However, little is known about what factors determine which immune genes are under positive selection. To address this question, we here focus on the mammalian immune system and investigate the importance of gene function and other factors like gene expression, protein-protein interactions, and overall selective constraint as determinants of positive selection.

View Article and Find Full Text PDF

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!