Aging is the primary risk factor for cognitive decline, an emerging health threat to aging societies worldwide. Whether anti-aging factors such as klotho can counteract cognitive decline is unknown. We show that a lifespan-extending variant of the human KLOTHO gene, KL-VS, is associated with enhanced cognition in heterozygous carriers. Because this allele increased klotho levels in serum, we analyzed transgenic mice with systemic overexpression of klotho. They performed better than controls in multiple tests of learning and memory. Elevating klotho in mice also enhanced long-term potentiation, a form of synaptic plasticity, and enriched synaptic GluN2B, an N-methyl-D-aspartate receptor (NMDAR) subunit with key functions in learning and memory. Blockade of GluN2B abolished klotho-mediated effects. Surprisingly, klotho effects were evident also in young mice and did not correlate with age in humans, suggesting independence from the aging process. Augmenting klotho or its effects may enhance cognition and counteract cognitive deficits at different life stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176932PMC
http://dx.doi.org/10.1016/j.celrep.2014.03.076DOI Listing

Publication Analysis

Top Keywords

klotho
8
cognitive decline
8
counteract cognitive
8
learning memory
8
klotho effects
8
life extension
4
extension factor
4
factor klotho
4
klotho enhances
4
enhances cognition
4

Similar Publications

Background: Calcification of the radial artery is one of the main causes of anastomotic stenosis in autogenous arteriovenous fistulas in uremic patients. However, the pathogenesis of calcification is still unknown. This study attempted to screen and validate the risk factors for vascular calcification in patients with uremia.

View Article and Find Full Text PDF

The COVID-19 pandemic has drawn significant attention to factors affecting disease severity, especially in older adults. This study explores the relationship between Klotho, an anti-aging protein, and COVID-19 severity. Conducted at Tehran's Firouzgar Hospital, this case-control study involved 279 participants, assessing serum levels of Klotho, inflammatory markers (C-reactive protein (CRP), Interleukin 6 (IL-6)), and Vitamin D.

View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Gliomas are the most common and lethal forms of malignant brain tumors. We attempted to identify the role of the aging-suppressor gene and Klotho protein in the immunopathogenesis of gliomas. We examined genetic variants by PCR-RFLP and measured serum Klotho levels using the ELISA method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!