Bone marrow stromal cell paracrine factors direct osteo/odontogenic differentiation of dental pulp cells.

Tissue Eng Part A

1 Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway .

Published: November 2014

Growth factors play an important role in osteo/odontogenic differentiation of human dental pulp cells (hDPCs). The aim of this in vitro study was to compare the biological effects of recombinant human growth differentiation factor 5 (rhGDF-5) alone and a cocktail of soluble growth factors (conditioned medium) released from human bone marrow mesenchymal stem cells (hBMMSCs) on the morphology, proliferation and osteo/odontogenic differentiation potential of hDPCs. Passage 4 hDPCs were harvested for culture in four different media: (a) DMEM with 10% FBS, (b) odontogenic induction medium (OM), (c) OM plus 500 ng/mL rhGDF-5, and (d) OM plus conditioned medium (CM). Morphological changes at 48 and 120 h were determined by crystal violet staining. The proliferation rates at 3, 24, 48, and 120 h were assayed by MTT. Using real-time reverse transcription-polymerase chain reaction (RT-PCR), the mRNA levels of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), collagen type I (Col 1), Runt-related transcription factor 2 (Cbfa1/Runx2), alkaline phosphatase (ALP), osteocalcin (OC), β3 tubulin (TUBB3), glial cell-derived neurotrophic factor (GDNF), angiopoietin-1 (Ang1), and vascular endothelial growth factor A (VEGFA), were determined at 2, 5, and 9 days. Protein expression of dental sialoprotein (DSP), DMP1, OC, and TUBB3 was recorded at 5 days, using western blot and immunocytochemistry. The effect of the different culture media on mineralization was determined by ALP staining at day 5 and Alizarin red S staining at days 7 and 14. In response to the different culture media, the shape of the hDPCs varied from spindled to polygonal and cuboidal. CM inhibited the cellular proliferation rate, while rhGDF-5 had no effect at early time points, but promoted cellular proliferation at 120 h of culture. In the CM group, the mRNA levels of Cbfa1/Runx2, Col 1, ALP, VEGFA, Ang1, and TUBB3 decreased and the levels of GDNF and OC increased. The mRNA levels of DSPP and DMP1 were inconsistent at the time points evaluated. The staining assays also demonstrated that compared with the other groups, the CM group exhibited lower expression of ALP and higher mineralization levels. Protein expression of DSP, DMP1, OC, and TUBB3 was pronounced by the CM-treated cells. It is concluded that under these in vitro conditions, CM released from hBMMSCs have a greater osteo/odontogenic inductive effect on hDPCs than rhGDF-5.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2013.0718DOI Listing

Publication Analysis

Top Keywords

osteo/odontogenic differentiation
12
culture media
12
mrna levels
12
bone marrow
8
dental pulp
8
pulp cells
8
growth factors
8
conditioned medium
8
protein expression
8
dsp dmp1
8

Similar Publications

Glutamine-αKG axis affects dentin regeneration and regulates osteo/odontogenic differentiation of mesenchymal adult stem cells via IGF2 m6A modification.

Stem Cell Res Ther

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Background: Multi-lineage differentiation of mesenchymal adult stem cells (m-ASCs) is crucial for tissue regeneration and accompanied with metabolism reprogramming, among which dental-pulp-derived m-ASCs has obvious advantage of easy accessibility. Stem cell fate determination and differentiation are closely related to metabolism status in cell microenvironment, which could actively interact with epigenetic modification. In recent years, glutamine-α-ketoglutarate (αKG) axis was proved to be related to aging, tumorigenesis, osteogenesis etc.

View Article and Find Full Text PDF

Aim: Human stem cells derived from the apical papilla (SCAPs) are recognized for their multilineage differentiation potential and their capacity for functional tooth root regeneration. However, the molecular mechanisms underlying odonto/osteogenic differentiation remain largely unexplored. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to conduct an in-depth analysis of the transcriptional changes associated with chemically induced osteogenesis in SCAPs.

View Article and Find Full Text PDF

Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth.

Sci Rep

October 2024

Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.

Article Synopsis
  • Calcium phosphate-based materials (CaP) show potential as dental pulp capping materials for baby teeth, with a focus on how inorganic phosphate (P) affects stem cells from exfoliated deciduous teeth (SHED).
  • Treatment with P led to an increase in late apoptosis without altering the overall cell cycle, while enhancing gene expression related to bone and tooth formation.
  • P promoted mineralization and calcium deposition but reduced fat cell formation by inhibiting specific pathways, suggesting a beneficial role for P in dental stem cell applications.
View Article and Find Full Text PDF
Article Synopsis
  • * Methylmethacrylate-based cement (MC) is a strong candidate for VPT due to its excellent sealing ability and mechanical properties, while phosphate-based glass (PBG) can aid in tissue regeneration.
  • * The study shows that a 5% PBG-integrated MC (5PIMC) not only retains the beneficial properties of MC but also enhances cell compatibility and hard tissue formation, making it a promising option for tooth repair.
View Article and Find Full Text PDF

Scaffold loaded LPS-hUCMSC-sEVs promote Osteo/odontogenic differentiation and angiogenic potential of hDPSCs.

Tissue Cell

December 2024

Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, China. Electronic address:

Article Synopsis
  • The study focuses on enhancing vital pulp therapy by using human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hUCMSC-sEVs) with lipopolysaccharide (LPS) pretreatment, which promotes inflammation control and stimulates dental pulp stem cells (hDPSCs) for dentin-pulp complex regeneration.
  • A composite scaffold made of collagen sponge and self-assembling peptide nanofibers (CS/SAPNS) loaded with LPS-hUCMSC-sEVs was developed to facilitate the release of these vesicles to support hDPSC differentiation into osteogenic and angiogenic cells.
  • The results showed that this composite scaffold effectively controlled the
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!