The direct effects of dipeptidyl peptidase-IV (DPP-IV) inhibitors on endoplasmic reticulum (ER) stress-induced apoptosis and inflammation in cardiomyocytes have not been elucidated. H9c2 cell viability, which was reduced by tunicamycin, was increased after DPP-IV inhibitor gemigliptin treatment. Gemigliptin significantly decreased the tunicamycin-mediated increase in glucose regulated protein 78 (GRP78) expression and ER stress-mediated signaling molecules such as protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C-EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α)/c-Jun N-terminal kinase (JNK)-p38. Furthermore, gemigliptin effectively induced Akt phosphorylation in a dose-dependent manner. Using flow cytometry and Hoechst staining, we showed that treatment with Akt inhibitor significantly blocked the anti-apoptotic effects mediated by gemigliptin. The reduction in tunicamycin-induced GRP78 level and PERK/CHOP pathway activity by gemigliptin was reversed after treatment with Akt inhibitor. In conclusion, gemigliptin effectively inhibited ER stress-induced apoptosis and inflammation in cardiomyocytes via Akt/PERK/CHOP and IRE1α/JNK-p38 pathways, suggesting its direct protective role in cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2014.04.017DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
12
apoptosis inflammation
12
inhibitor gemigliptin
8
stress-induced apoptosis
8
inflammation cardiomyocytes
8
gemigliptin effectively
8
treatment akt
8
akt inhibitor
8
gemigliptin
7
dipeptidyl petidase-iv
4

Similar Publications

The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.

View Article and Find Full Text PDF

Natural Products From Plants Targeting Leptin Resistance for the Future Development of Anti-Obesity Agents.

Phytother Res

January 2025

Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.

Obesity is a serious health threat, which has affected 16% of adults globally in 2022 and shows a trend toward youthfulness. Leptin, as a regulator of body weight, can suppress appetite and promote energy expenditure, making it potential in obesity treatment. Nevertheless, with the progress of relevant research, it is worth noting that monotherapy with leptin is not an effective strategy since most obese individuals are hyperleptinemic and resistant to leptin, where high levels of leptin fail to exert its weight-loss effects.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!