Trapping-detrapping processes in nanostructures are generally considered to be destabilizing factors. However, we discovered a positive role for a single trap in the registration and transformation of useful signal. We use switching kinetics of current fluctuations generated by a single trap in the dielectric of liquid-gated nanowire field effect transistors (FETs) as a basic principle for a novel highly sensitive approach to monitor the gate surface potential. An increase in Si nanowire FET sensitivity of 400% was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl5010724 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
All-perovskite tandem solar cells (APTSCs) offer the potential to surpass the Shockley-Queisser limit of single-junction solar cells at low cost. However, high-performance APTSCs contain unstable methylammonium (MA) cation in the tin-lead (Sn-Pb) narrow bandgap subcells. Currently, MA-free Sn-Pb perovskite solar cells (PSCs) show lower performance compared with their MA-containing counterparts.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China.
Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion trap quantum simulator with 300 qubits.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.
Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
Background: RANKL and SCLEROSTIN antibodies have provided a strong effective choice for treating osteoporosis in the past years, which suggested novel molecular target identification and therapeutic strategies development are important for the treatment of osteoporosis. The therapeutic effect of verapamil, a drug previously used for cardiovascular diseases, on diabetes was due to the inhibition of TXNIP expression, which has also been reported as a target in mice osteoporosis. Whether verapamil-inhibited TXNIP expression is related to osteoporosis and how it works on the molecular level is worthy to be explored.
View Article and Find Full Text PDFWe present a dual isotope magneto-optical trap (MOT), simultaneous sub-Doppler laser cooling, and magnetic trapping of a spin-polarized K-K Bose-Fermi mixture realized in a single-chamber setup with an unenriched potassium dispenser as the source of atoms. We are able to magnetically confine more than 2.2 × 10 fermions ( = 9/2 , = 9/2) and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!