Motivation: Several state-of-the-art methods for isoform identification and quantification are based on [Formula: see text]-regularized regression, such as the Lasso. However, explicitly listing the-possibly exponentially-large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using the [Formula: see text]-penalty are either restricted to genes with few exons or only run the regression algorithm on a small set of preselected isoforms.
Results: We introduce a new technique called FlipFlop, which can efficiently tackle the sparse estimation problem on the full set of candidate isoforms by using network flow optimization. Our technique removes the need of a preselection step, leading to better isoform identification while keeping a low computational cost. Experiments with synthetic and real RNA-Seq data confirm that our approach is more accurate than alternative methods and one of the fastest available.
Availability And Implementation: Source code is freely available as an R package from the Bioconductor Web site (http://www.bioconductor.org/), and more information is available at http://cbio.ensmp.fr/flipflop.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147886 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btu317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!