Background: The number of psychotropic drugs has expanded tremendously over the past few decades with a proportional increase in drug-drug interactions. The majority of psychotropic agents are biotransformed by hepatic enzymes, which can lead to significant drug-drug interactions. Most drug-drug interactions of psychotropics occur at metabolic level involving the hepatic cytochrome P450 enzyme system.

Methods: We searched the National Library of Medicine, PsycINFO, and Cochrane reviews from 1981 to 2012 for original studies including clinical trials, double-blind, placebo-controlled studies, and randomized controlled trials. In addition, case reports, books, review articles, and hand-selected journals were utilized to supplement this review.

Results: Based on the clinical intensity of outcome, cytochrome interactions can be classified as severe, moderate, and mild. Severe interactions include effects that might be acutely life threatening. They are mainly inhibitory interactions with cardiovascular drugs. Moderate interactions include efficacy issues. Mild interactions include nonserious side effects, such as somnolence.

Conclusions: Psychotropic drugs may interact with other prescribed medications used to treat concomitant medical illnesses. A thorough understanding of the most prescribed medications and patient education will help reduce the likelihood of potentially fatal drug-drug interactions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug-drug interactions
16
psychotropic drugs
12
interactions include
12
interactions
10
cytochrome p450
8
prescribed medications
8
current review
4
review cytochrome
4
p450 interactions
4
psychotropic
4

Similar Publications

Drug-drug interactions (DDIs) represent a significant concern for clinical care and public health, but the health consequences of many DDIs remain largely underexplored. This knowledge gap underscores the critical need for pharmacoepidemiologic research to evaluate real-world health outcomes of DDIs. In this review, we summarize the definitions commonly used in pharmacoepidemiologic DDI studies, discuss common sources of bias, and illustrate through examples how these biases can be mitigated.

View Article and Find Full Text PDF

Predicting Drug-Drug Interactions (DDIs) enables cost reduction and time savings in the drug discovery process, while effectively screening and optimizing drugs. The intensification of societal aging and the increase in life stress have led to a growing number of patients suffering from both heart disease and depression. These patients often need to use cardiovascular drugs and antidepressants for polypharmacy, but potential DDIs may compromise treatment effectiveness and patient safety.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have emerged as the first-line treatment for driver-negative advanced non-small cell lung cancer (NSCLC). However, there is uncertainty regarding the availability and timing of ICI initiation in patients with NSCLC combined with pulmonary tuberculosis (TB). Additionally, the implementation of dual therapy for anti-TB and anti-tumor treatment poses significant challenges in terms of avoiding drug-drug interactions and reducing adverse reactions during clinical diagnosis and treatment.

View Article and Find Full Text PDF

The administration of certain cancer therapies can be associated with the development of cardiovascular toxicity or complications. This spectrum of toxicities is broad and requires nuanced approaches for prevention, identification, and management. This expert panel summarizes the consensus of opinions of diverse health care professionals in several key areas: 1) cardioprotection involves strategies aimed at the primary prevention of cancer therapy-related cardiovascular toxicity; 2) surveillance entails monitoring for cancer therapy-related cardiovascular toxicity during cancer therapy; 3) permissive cardiotoxicity is the informed continuation of cancer therapy in the presence of cardiovascular toxicity, along with the implementation of mitigating cardiovascular treatments; and 4) special considerations include the invasive management of severe cardiovascular disease in patients receiving treatments for advanced cancer and the exploration of drug-drug interactions in cardio-oncology.

View Article and Find Full Text PDF

Purpose: To evaluate the drug-drug interactions (DDI) of tunodafil (youkenafil), a novel phosphodiesterase type 5 inhibitor, its inhibitory effects on CYP450 enzymes in vitro and its clinical trials in combination with ritonavir or omeprazole were conducted.

Methods: The inhibitory effect of tunodafil on seven major CYP450 enzymes in human liver microsomes was investigated by probe substrate method. The effect of tunodafil on the pharmacokinetics of omeprazole (CYP2C19 substrate) in 40 healthy subjects, who received a single dose of 40 mg omeprazole in combination with tunodafil on the day 8 after taking 100 mg tunodafil daily for 7 days, was assessed based on CYP2C19 genotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!