High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension.

Biomed Res Int

Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter EX12LU, UK ; Department of Nutrition, Exercise and Sports, Copenhagen Centre for Team Sport and Health, University of Copenhagen, 2100 Copenhagen, Denmark.

Published: December 2014

To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n = 21; HIT), moderate-intensity (n = 21; MOD), and control groups (n = 20; CON). HIT performed 6-10 × 30 s all-out swimming interspersed by 2 min recovery and MOD swam continuously for 1 h at moderate intensity for a 15-week period completing in total 44 ± 1 and 43 ± 1 sessions, respectively. In CON, all measured variables were similar before and after the intervention period. Systolic BP decreased (P < 0.05) by 6 ± 1 and 4 ± 1 mmHg in HIT and MOD; respectively. Resting heart rate declined (P < 0.05) by 5 ± 1 bpm both in HIT and MOD, fat mass decreased (P < 0.05) by 1.1 ± 0.2 and 2.2 ± 0.3 kg, respectively, while the blood lipid profile was unaltered. In HIT and MOD, performance improved (P < 0.05) for a maximal 10 min swim (13 ± 3% and 22 ± 3%), interval swimming (23 ± 3% and 8 ± 3%), and Yo-Yo IE1 running performance (58 ± 5% and 45 ± 4%). In conclusion, high-intensity intermittent swimming is an effective training strategy to improve cardiovascular health and physical performance in sedentary women with mild hypertension. Adaptations are similar with high- and moderate-intensity training, despite markedly less total time spent and distance covered in the high-intensity group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000940PMC
http://dx.doi.org/10.1155/2014/728289DOI Listing

Publication Analysis

Top Keywords

cardiovascular health
12
women mild
12
mild hypertension
12
hit mod
12
high-intensity intermittent
8
intermittent swimming
8
improves cardiovascular
8
health status
8
decreased 005
8
high-intensity
5

Similar Publications

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Moving from just measuring, to acting on frailty in specialties outside geriatrics.

Eur Geriatr Med

January 2025

Department of Cardiovascular Sciences, University of Leicester, On-Call Suite, Glenfield General Hospital, Groby Road, Leicester, LE3 9QP, England.

View Article and Find Full Text PDF

The European Society of Cardiology (ESC) has updated its guidelines on cardiac pacing and cardiac resynchronisation. As the majority are class II recommendations (61%) and based on expert opinion (59%), a critical appraisal for the Dutch situation was warranted. A working group has been established, consisting of specialists in cardiology, cardiothoracic surgery, geriatrics, allied professionals in cardiac pacing, and patient organisations with support from the Knowledge Institute of the Dutch Association of Medical Specialists.

View Article and Find Full Text PDF

Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).

View Article and Find Full Text PDF

Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!