While C2H2 zinc finger transcription factors (TF) are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum L.) upon infestation by either the generalist tobacco hornworm (THW, Manduca sexta L.) or the specialist Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). StZFP1 has been previously characterized as conferring salt tolerance to transgenic tobacco and its transcript is induced by Phytophthora infestans and several abiotic stresses. StZFP2 has not been characterized previously, but contains the hallmarks of a C2H2 zinc finger TF, with two conserved zinc finger domains and DLN motif, which encodes a transcriptional repressor domain. Expression studies demonstrate that StZFP2 transcript is also induced by tobacco hornworm and Colorado potato beetle. These observations expand the role of the C2H2 transcription factor in potato to include the response to chewing insect pests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2014.04.010 | DOI Listing |
iScience
January 2025
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
Dev Cell
January 2025
Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore. Electronic address:
N-methyladenosine (mA) RNA modification and its effectors control various plant developmental processes, yet whether and how these effectors are transcriptionally controlled to confer functional specificity so far remain elusive. Herein, we show that a rice C2H2 zinc-finger protein, OsZAF, specifically activates the expression of OsFIP37 encoding a core component of the mA methyltransferase complex during microsporogenesis in rice anthers. OsFIP37, in turn, facilitates mA modification and stabilization of an auxin biosynthesis gene OsYUCCA3 to promote auxin biosynthesis in anthers.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!