We compare dynamical heterogeneities in equilibrated supercooled liquids and in the nonequilibrium glassy state within the framework of the random first order transition theory. Fluctuating mobility generation and transport in the glass are treated by numerically solving stochastic continuum equations for mobility and fictive temperature fields that arise from an extended mode coupling theory containing activated events. Fluctuating spatiotemporal structures in aging and rejuvenating glasses lead to dynamical heterogeneity in glasses with characteristics distinct from those found in the equilibrium supercooled liquid. The non-Gaussian distribution of activation free energies, the stretching exponent β, and the growth of characteristic lengths are studied along with the four-point dynamical correlation function. Asymmetric thermodynamic responses upon heating and cooling are predicted to be the result of the heterogeneity and the out-of-equilibrium behavior of glasses below Tg. Our numerical results agree with experimental calorimetry. We numerically confirm the prediction of Lubchenko and Wolynes in the glass that the dynamical heterogeneity can lead to noticeably bimodal distributions of local fictive temperatures during some histories of preparation which explains in a unified way recent experimental observations that have been interpreted as coming from there being two distinct equilibration mechanisms in glasses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp4125777 | DOI Listing |
Soft Matter
January 2025
Departamento de Física, Universidade Federal de Viçosa (UFV), Av. P. H. Rolfs, s/n, 36570-900 Viçosa, Brazil.
We introduce a generalization of the Kelvin-Voigt model in order to include and characterize heterogeneities in viscoelastic semisolid materials. By considering a microrheological approach, we present analytical expressions for the mean square displacement and for the time-dependent diffusion coefficient of probe particles immersed in a viscoelastic material described by this model. Besides validating our theoretical approach through Brownian dynamics simulations, we show how the model can be used to describe experimental data obtained for polyacrylamide and LAPONITE® gels.
View Article and Find Full Text PDFHeliyon
January 2025
Mechanical Power Engineering Department, Faculty of Engineering - Mataria, Helwan University, Cairo, 11718, Egypt.
Wind turbine control is critical in power generation from wind, thus assuring great efficiency and cost-effectiveness. This has been a subject of intense research, and its advancements are critical to developing even better and efficient wind turbines. This research looks at several passive flow control mechanisms for horizontal wind turbines.
View Article and Find Full Text PDFEduc Action Res
June 2024
Department of Public Health, Leiden University Medical Center, Leiden, The Netherlands.
Globally, many complex issues, like the ageing population and health inequalities, require attention. People are experimenting to combat these issues in their local contexts through bigger or smaller networks; however, much of the knowledge about these initiatives remains localised and elitist and omits the voices and perspectives of citizens. This article identifies the characteristics of a more horizontal, emergent and plural epistemology to mobilize knowledge.
View Article and Find Full Text PDFActa Naturae
January 2024
Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation.
Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!