The synthesis of a novel nanocapsule-based carrier system is described, possessing a triggered release in remote-controlled fashion upon application of an external magnetic field in combination with the possibility to use the capsules as contrast agents for magnetic resonance imaging (MRI). Therefore, polymeric nanocontainers containing a high amount of superparamagnetic MnFe2 O4 nanoparticles and a thermo-degradable shell are fabricated via a miniemulsion route. The process allows the facile encapsulation of hydrophilic compounds, as demonstrated for a model dye. Release of the encapsulated dye is achieved upon application of an external alternating magnetic field. While the magnetic nanoparticles here act as heat generators to stimulate the decomposition of the shell and subsequently a release of the payload, they additionally enable the use of the nanocapsules as imaging agents for MRI. Due to the encapsulated magnetic nanoparticles, the nanocapsules possess high r2 relaxivity values of 96-120 Hz mmol(-1) , which makes them suitable for MRI. In toxicity experiments, the nanocapsules show no cell toxicity up to fairly high concentrations (600 µg mL(-1) ). Due to their dual-functionality, the nanocapsules possess high potential as nanocarriers with combined magnetic-field-induced release capability and as contrast agents for MRI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201400122DOI Listing

Publication Analysis

Top Keywords

combined magnetic-field-induced
8
magnetic-field-induced release
8
application external
8
magnetic field
8
contrast agents
8
magnetic nanoparticles
8
agents mri
8
nanocapsules possess
8
possess high
8
release
5

Similar Publications

Magnetic field-induced synergistic therapy of cancer using magnetoplasmonic nanoplatform.

Mater Today Bio

February 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.

View Article and Find Full Text PDF

Colossal magnetoresistance (CMR) is an exotic phenomenon that allows for the efficient magnetic control of electrical resistivity and has attracted significant attention in condensed matter due to its potential for memory and spintronic applications. Heusler alloys are the subject of considerable interest in this context due to the electronic properties that result from the nontrivial band topology. Here, the observation of CMR near room temperature is reported in the shape memory Heusler alloy NiMnIn, which is attributed to the combined effects of magnetic field-induced martensite twin variant reorientation (MFIR) and magnetic field-induced structural phase transformation (MFIPT).

View Article and Find Full Text PDF
Article Synopsis
  • * The study uses broadband optically detected magnetic resonance (ODMR) to detect a weakly exchange-coupled triplet pair, which is influenced by light intensity and molecular orientation.
  • * The research reveals a complex interaction of multiexciton states and transitions that can inform future designs of materials for exciton fission applications.
View Article and Find Full Text PDF

Macroscopic Room-Temperature Magnetoelectricity in Piezoelectric (Core)-Ferrimagnetic (Shell) Nanocomposites.

ACS Nano

November 2024

RIAM, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-5 1, Kwanak-gu, Seoul 08826, Republic of Korea.

The magnetoelectric (ME) effect, which involves the interaction of magnetic and electric fields within a material, has a significant potential for various applications. Our study addresses the limitations of conventional magnetostriction-based ME materials by demonstrating an alternative approach that achieves substantial ME effects in core-shell-type nanocomposites at room temperature. By synthesizing ferrimagnetic FeO nanoparticles onto piezoelectric poly(vinylidene fluoride) (PVDF) particles, we identified a distinct ME mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in pulsed magnetic field (PMF) technology show promise as a non-invasive method for electroporation in biomedical research.
  • A new PMF generator was developed based on resonance principles, exhibiting high energy efficiency and the ability to modulate pulse oscillations effectively.
  • Experiments indicated that the sinusoidal oscillating PMF, when combined with drugs, enhances the effectiveness of tumor cell treatment, showcasing the generator's potential in cancer therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!