Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between -37 and -54 kJ mol(-1) of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp502279w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!