Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Marine fish are an important nutritional source for highly polyunsaturated fatty acids (PUFAs). PUFA biosynthesis requires the following key enzymes: delta-4 (Δ-4) desaturase, delta-5 (Δ-5) desaturase, delta-6 (Δ-6) desaturase, delta-5 (Δ-5) elongase, and delta-6 (Δ-6) elongase. The effect of overexpressing delta-5 desaturase and/or delta-6 desaturase in zebrafish muscle has not previously been reported. Herein, we investigated the effects of these proteins on antibacterial and immunomodulatory activity in transgenic zebrafish infected with Vibrio alginolyticus. Overexpression of delta-5 and delta-6 desaturase enhanced antibacterial activity at 4 and 12 h after injection of bacteria into muscle, as compared to controls. Furthermore, expression of immune-related genes (IL-1β, IL-22, and TNF-α) was observed to be altered in transgenic fish after 4 h of bacterial infection, resulting in a significant decrease in the inflammatory response, as compared to control fish. These results demonstrate that muscle-specific expression of transgenic desaturases in zebrafish not only enhance PUFA production, but also enhance antibacterial and anti-inflammatory activity. Overall, these results identify delta-5 and delta-6 desaturase as novel candidate genes for use in aquaculture, to enhance both disease resistance and fish oil production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2014.04.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!