L-lysine 4-nitrophenolate monohydrate (LLPNP) has been synthesized and grown by solution growth method at room temperature using deionised water as a solvent. The crystal structure of the materials was solved by single crystal X-ray diffraction analysis and it was found that the material has orthorhombic system. The crystallinity of the grown crystals was studied by the powder X-ray diffraction analysis. Molecular structure of the grown crystal was investigated by 1H NMR spectroscopy. The various functional groups of the sample were identified by Fourier transform infrared and Fourier transform-Raman spectroscopic analyses. Thermal stability of the grown crystal has been studied by Thermogravimetric and Differential thermal (TG&DTA) analysis. The optical absorption of the grown crystals has been ascertained by UV-Vis-NIR absorption studies. Second harmonic generation (SHG) efficiency of the material has been determined by Kurtz and Perry technique and the efficiency was found to be 4.45 and 1.4 times greater than that of standard KDP and urea samples, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.04.033 | DOI Listing |
Adv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.. Electronic address:
The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry, University of California, Davis, California 95616, United States.
NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!