A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noise-tuning-based hysteretic noisy chaotic neural network for broadcast scheduling problem in wireless multihop networks. | LitMetric

Compared with noisy chaotic neural networks (NCNNs), hysteretic noisy chaotic neural networks (HNCNNs) are more likely to exhibit better optimization performance at higher noise levels, but behave worse at lower noise levels. In order to improve the optimization performance of HNCNNs, this paper presents a novel noise-tuning-based hysteretic noisy chaotic neural network (NHNCNN). Using a noise tuning factor to modulate the level of stochastic noises, the proposed NHNCNN not only balances stochastic wandering and chaotic searching, but also exhibits stronger hysteretic dynamics, thereby improving the optimization performance at both lower and higher noise levels. The aim of the broadcast scheduling problem (BSP) in wireless multihop networks (WMNs) is to design an optimal time-division multiple-access frame structure with minimal frame length and maximal channel utilization. A gradual NHNCNN (G-NHNCNN), which combines the NHNCNN with the gradual expansion scheme, is applied to solve BSP in WMNs to demonstrate the performance of the NHNCNN. Simulation results show that the proposed NHNCNN has a larger probability of finding better solutions compared to both the NCNN and the HNCNN regardless of whether noise amplitudes are lower or higher.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2012.2218126DOI Listing

Publication Analysis

Top Keywords

noisy chaotic
16
chaotic neural
16
hysteretic noisy
12
optimization performance
12
noise levels
12
noise-tuning-based hysteretic
8
neural network
8
broadcast scheduling
8
scheduling problem
8
wireless multihop
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!