Semisupervised classification (SSC) learns, from cheap unlabeled data and labeled data, to predict the labels of test instances. In order to make use of the information from unlabeled data, there should be an assumed relationship between the true class structure and the data distribution. One assumption is that data points clustered together are likely to have the same class label. In this paper, we propose a new algorithm, namely, cluster-based regularization (ClusterReg) for SSC, that takes the partition given by a clustering algorithm as a regularization term in the loss function of an SSC classifier. ClusterReg makes predictions according to the cluster structure together with limited labeled data. The experiments confirmed that ClusterReg has a good generalization ability for real-world problems. Its performance is excellent when data follows this cluster assumption. Even when these clusters have misleading overlaps, it still outperforms other state-of-the-art algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2012.2214488 | DOI Listing |
Front Artif Intell
January 2025
College of Computer and Control Engineering, Northeast Forestry University, Harbin, China.
Introduction: In clinical, the echocardiogram is the most widely used for diagnosing heart diseases. Different heart diseases are diagnosed based on different views of the echocardiogram images, so efficient echocardiogram view classification can help cardiologists diagnose heart disease rapidly. Echocardiogram view classification is mainly divided into supervised and semi-supervised methods.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China.
J Mol Biol
January 2025
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:
Single-cell RNA sequencing (scRNA-seq) analysis offers tremendous potential for addressing various biological questions, with one key application being the annotation of query datasets with unknown cell types using well-annotated external reference datasets. However, the performance of existing supervised or semi-supervised methods largely depends on the quality of source data. Furthermore, these methods often struggle with the batch effects arising from different platforms when handling multiple reference or query datasets, making precise annotation challenging.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China. Electronic address:
Background: Early-onset major depressive disorder (EO-MDD) is characterized by its significant heterogeneity, hindering progress in research. Traditional case-control studies, like group-level structural covariance network, struggle to capture individual heterogeneity among EO-MDD patients.
Methods: In this study, T1-weighted structural magnetic resonance imaging was obtained from 185 participants, including 103 EO-MDD patients and 82 healthy controls.
PLoS One
January 2025
College of Business, Southern University of Science and Technology, Shenzhen, China.
In credit risk assessment, unsupervised classification techniques can be introduced to reduce human resource expenses and expedite decision-making. Despite the efficacy of unsupervised learning methods in handling unlabeled datasets, their performance remains limited owing to challenges such as imbalanced data, local optima, and parameter adjustment complexities. Thus, this paper introduces a novel hybrid unsupervised classification method, named the two-stage hybrid system with spectral clustering and semi-supervised support vector machine (TSC-SVM), which effectively addresses the unsupervised imbalance problem in credit risk assessment by targeting global optimal solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!