Fe(II)(Metz)6](Fe(III)Br4)2 (Metz = 1-methyltetrazole) is one of the rare systems combining spin-crossover and long-range magnetic ordering. A joint neutron and X-ray diffraction and magnetometry study allows determining its collinear antiferromagnetic structure, and shows an increase of the Néel temperature from 2.4 K at ambient pressure, to 3.9 K at 0.95 GPa. Applied pressure also enables a full high-spin to low-spin switch at ambient temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201402046 | DOI Listing |
J Phys Condens Matter
January 2025
Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China, Ningbo, Zhejiang, 315211, CHINA.
The interactions between the carbon skeleton and the metal atoms of a binary transition metal carbide (BTMC) are particular interest for industrial applications with openning physics and chemitry questions, especially in magnetoelectric (ME) functional materials and cemented carbides. Chromium and carbon BTMCs are a series of intermetallic compounds with typical chemical formulas and sharepolycrystalline powder c somehromium special characteristics.and carbon as precursors, In this paper,and synthesized s we usedingle-phase bluk Cr7C3 (orthorhombic, with space group: Pnma) with high density and good crystallinity by means of high-temperature and high-pressure quenching method (HTHPQM).
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Department of Pharmaceutical Engineering, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233030, PR China. Electronic address:
Two Gd(III) complexes [GdL(HO)(NO)(CHOH)(CHCHOH)] (Gd1) and [Gd(OOCCH)L(HO)]•2(HO) (Gd2) (HL = 2-pyridylcarboxaldehyde isonicotinoylhydrazone) were synthesized with a Schiff base ligand. Crystallographic study reveals both Gd1 and Gd2 have a zero-dimensional mononuclear or binuclear structure. Magnetic investigations demonstrate that Gd1 and Gd2 exhibit potential magnetocaloric effects due to Gd(III) ions, which provide negligible magnetic anisotropy, and possess low-lying excited spin states.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Hepatocellular carcinoma (HCC) is typically diagnosed at intermediate to advanced stage, making surgical treatment unfeasible. Conversion therapy aims to reduce tumor stage, improve hepatic resection feasibility, and lower recurrence rates. Since traditional therapies are often accompanied by uncertainty of efficacy, there is an urgent need to explore new treatment strategies.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing University Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
Drug-induced liver injury (DILI) is a common clinical problem with urgent respect to demanding early diagnosis. Exosomal miRNAs are reliable and noninvasive biomarkers for the early diagnosis of DILI. However, accurate and feasible detection of exosomal miRNAs is often hampered by the low abundance of miRNAs, inefficient exosome separation techniques, and the requirement for RNA extraction from large sample volumes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:
Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!