A predicted binding site for cholesterol on the GABAA receptor.

Biophys J

Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey. Electronic address:

Published: May 2014

AI Article Synopsis

  • Research shows that cholesterol and other steroids influence GABA type A receptor (GABAAR) function, but the exact structural interactions remain unclear.
  • Homology models based on the glutamate-gated channel GluCl demonstrate possible disulfide bridges that could connect specific sections of the receptor, prompting a discussion on their biological importance.
  • The cholesterol binding sites revealed through various modeling techniques suggest a flexible interaction, potentially aiding in receptor pore opening.

Article Abstract

Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017285PMC
http://dx.doi.org/10.1016/j.bpj.2014.03.024DOI Listing

Publication Analysis

Top Keywords

disulfide bridges
8
cholesterol
5
predicted binding
4
binding site
4
site cholesterol
4
cholesterol gabaa
4
gabaa receptor
4
receptor modulation
4
modulation gaba
4
gaba type
4

Similar Publications

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

Nat Commun

January 2025

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.

View Article and Find Full Text PDF

Heme is involved in many critical processes in pathogenic bacteria as iron acquisition by these microorganisms is achieved by either direct uptake of heme or use of heme-binding proteins called hemophores. Exploring the underlying mechanisms on a molecular level can open new avenues in understanding the host-pathogen interactions. Any imbalance of the heme concentration has a direct impact on the bacterial growth and survival.

View Article and Find Full Text PDF

Structure-based design of covalent nanobody binders for a thermostable green fluorescence protein.

Acta Biochim Biophys Sin (Shanghai)

December 2024

Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies.

View Article and Find Full Text PDF

Protein biomarker discovery in human biological fluids has greatly developed over the past two decades thanks to technological advances allowing deeper proteome coverage and higher sample throughput, among others. While blood samples are most commonly investigated due to their moderate ease of collection and high information content, other biological fluids such as cerebrospinal fluid (CSF) and urine are highly relevant for specific pathologies, such as brain and urologic diseases, respectively. Independently of the biofluid of interest, platforms that can robustly handle a large number of samples are essential in the discovery phase of a clinical study.

View Article and Find Full Text PDF

Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target due to its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!