Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As one of the fundamental features, color provides useful information and plays an important role for face recognition. Generally, the choice of a color space is different for different visual tasks. How can a color space be sought for the specific face recognition problem? To address this problem, we propose a sparse tensor discriminant color space (STDCS) model that represents a color image as a third-order tensor in this paper. The model cannot only keep the underlying spatial structure of color images but also enhance robustness and give intuitionistic or semantic interpretation. STDCS transforms the eigenvalue problem to a series of regression problems. Then one spare color space transformation matrix and two sparse discriminant projection matrices are obtained by applying lasso or elastic net on the regression problems. The experiments on three color face databases, AR, Georgia Tech, and Labeled Faces in the Wild face databases, show that both the performance and the robustness of the proposed method outperform those of the state-of-the-art TDCS model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2012.2191620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!