The gas phase reaction between the boron monoxide radical (BO; XΣ) and allene (HCCCH; XA) was investigated experimentally under single collision conditions using the crossed molecular beam technique and theoretically exploiting ab initio electronic structure and statistical (RRKM) calculations. The reaction was found to follow indirect (complex forming) scattering dynamics and proceeded via the formation of a van der Waals complex (BOCH). This complex isomerized via addition of the boron monoxide radical (BO; XΣ) with the radical center located at the boron atom to the terminal carbon atom of the allene molecule forming a HCCCHBO intermediate on the doublet surface. The chemically activated HCCCHBO intermediate underwent unimolecular decomposition via atomic hydrogen elimination from the terminal carbon atom holding the boronyl group through a tight exit transition state to synthesize the boronylallene product (HCCCHBO) in a slightly exoergic reaction (55 ± 11 kJ mol). Statistical (RRKM) calculations suggest that minor reaction channels lead to the products 3-propynyloxoborane (CH(BO)CCH) and 1-propynyloxoborane (CHCCBO) with fractions of 1.5% and 0.2%, respectively. The title reaction was also compared with the cyano (CN; XΣ)-allene and boronyl-methylacetylene reactions to probe similarities, but also differences of these isoelectronic systems. Our investigation presents a novel gas phase synthesis and characterization of a hitherto elusive organyloxoborane (RBO) monomer-boronylallene-which is inherently tricky to isolate in the condensed phase except in matrix studies; our work further demonstrates that the crossed molecular beams approach presents a useful tool in investigating the chemistry and synthesis of highly reactive organyloxoboranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp501595nDOI Listing

Publication Analysis

Top Keywords

crossed molecular
12
single collision
8
collision conditions
8
conditions crossed
8
molecular beams
8
gas phase
8
boron monoxide
8
monoxide radical
8
radical xΣ
8
statistical rrkm
8

Similar Publications

A healthy diet is a key determinant of successful aging. However, the psychological, social, and physiological changes associated with ageing often disrupt dietary behaviours. Hungary has one of the highest rates of chronic age-related diseases in the European Union, exacerbated by unhealthy dietary patterns and rapid population aging.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!