Purpose: In general, the surface functionalization of polymeric nanoparticles is carried out by covalently bounding ligands to the nanoparticle surface. This process can cause a lack or decrease of the ligand specificity to its target receptor, besides the need of purification steps. We proposed a ligand-metal-chitosan-lecithin complex as a new strategy to functionalize the surface of biodegradable nanoparticles.
Methods: One pot synthesis of scFv anti-LDL(-)-functionalized nanocapsules was carried out by self-assembly and interfacial reactions. Particle sizing techniques, lipid peroxidation and molecular recognition by enzyme linked immuno sorbent assays were carried out.
Results: The selected formulation had unimodal size distribution with mean diameter of about 130 nm. The metals in the complex did not enhance the oxidative stress, and the scFv anti-LDL(-)-functionalized nanocapsules recognized LDL(-) and did not react with native LDL indicating the maintenance of the active site of the fragment.
Conclusions: The one pot synthesis, using the ligand-metal-chitosan-lecithin complex to functionalize the surface of the biodegradable nanocapsules, maintained the active site of the antibody fragment making the device interesting for applications in nanomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-014-1392-5 | DOI Listing |
Pharm Res
November 2014
Programa de Pós-Graduação em Ciências Farmacêuticas Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Purpose: In general, the surface functionalization of polymeric nanoparticles is carried out by covalently bounding ligands to the nanoparticle surface. This process can cause a lack or decrease of the ligand specificity to its target receptor, besides the need of purification steps. We proposed a ligand-metal-chitosan-lecithin complex as a new strategy to functionalize the surface of biodegradable nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!