In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature13318 | DOI Listing |
Methods Enzymol
January 2025
Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:
As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.
View Article and Find Full Text PDFInt J Biochem Cell Biol
January 2025
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:
Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.
View Article and Find Full Text PDFBiochem J
January 2025
University of Dundee, Dundee, United Kingdom.
The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFIUBMB Life
January 2025
Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!