The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells. In addition, both the formation and the integrity of the blood-testis barrier are compromised owing to mislocalization of N-cadherin and connexin 43 at the surface of Sertoli cells. We further establish that Mex3b acts to regulate the cortical level of activated Rap1, a small G protein controlling phagocytosis and cell-cell interaction, through the activation and transport of Rap1GAP. The active form of Rap1 (Rap1-GTP) is abnormally increased at the membrane cortex and chemically restoring Rap1-GTP to physiological levels rescues the phagocytic and adhesion abilities of Sertoli cells. Overall, these findings implicate Mex3b in the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.108514DOI Listing

Publication Analysis

Top Keywords

sertoli cells
12
spatial organization
8
organization rap1
8
rap1 pathway
8
rna-binding protein
4
mex3b
4
protein mex3b
4
mex3b regulates
4
regulates spatial
4
rap1
4

Similar Publications

Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women.

Elife

January 2025

Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

Background/objectives: Climate change-induced temperature elevations pose significant challenges to livestock reproduction, particularly affecting testicular function in small ruminants. This study investigates the acute heat-stress response in goat Sertoli cells (SCs), aiming to elucidate the molecular mechanisms underlying heat-induced damage to male reproductive tissues.

Methods: SCs were isolated from testes of 4-month-old black goats and exposed to heat stress (44 °C for 2.

View Article and Find Full Text PDF

Melatonin Improves HO-Induced Oxidative Stress in Sertoli Cells Through Nrf2-Keap1 Signaling Pathway.

Genes (Basel)

November 2024

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.

: Oxidative stress in the testicles of male livestock can cause reduced fertility. Melatonin is a natural product with antioxidant effects, but its specific antioxidant mechanism is still unclear. This study used calf testicular Sertoli cells as materials to explore the mechanism by which melatonin alleviates the oxidative stress of Sertoli cells, laying a foundation for improving the fertility of bulls.

View Article and Find Full Text PDF

Variations in disease resistance among pig breeds have been extensively documented, with Sertoli cells (SCs) playing a pivotal role in spermatogenesis. Infections can induce oxidative stress, which can lead to damage to these cells. This study aimed to compare the levels of oxidative stress in SCs from Rongchang and Landrace pig breeds following LPS challenge.

View Article and Find Full Text PDF

Cisplatin (CIS) is a widely used chemotherapeutic agent, but its side effects, such as oxidative stress, inflammation, and apoptosis, often lead to male reproductive damage. Oxidative stress, primarily caused by the excessive generation of reactive oxygen species (ROS), plays a critical role in disrupting testicular homeostasis, resulting in spermatogenic impairment and tissue injury. L-cysteine (CYS), a semi-essential amino acid with potent antioxidant and anti-inflammatory properties, may offer protection against CIS-induced oxidative damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!