In vitro studies of epithelium-associated crystallization caused by uropathogens during urinary calculi development.

Microb Pathog

Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland. Electronic address:

Published: January 2015

Infectious urinary stones account for about 10% of all urinary stones. In 50% of cases urolithiasis is a recurrent illness, which can lead to the loss of a kidney if not properly treated. One of the reasons for recurrence of the disease may be the ability of bacteria to invade urothelial cells, persist in the host cells and serve as potential reservoirs for infection. Various uropathogens are associated with the formation of bacteria-induced urinary stones but Proteus mirabilis is the most commonly isolated (70%). An in vitro model was used in this study to analyze intracellular growth and crystallization in the presence of P. mirabilis, Klebsiella pneumoniae and Escherichia coli. Human ureter (Hu 609) and bladder (HCV 29) epithelial cell lines were infected with bacteria and incubated (3-72 h) in the presence of synthetic urine and amikacin to prevent extracellular bacterial growth. During the incubation the number of bacteria (CFU/ml) inside epithelial cells and the intensity of crystallization were established. Crystallization was determined as an amount of a calcium radioisotope. The chosen strains of uropathogens were able to invade both types of epithelial cells but the Hu 609 cells were invaded to a higher extent. However, crystallization occurred only in the presence of P. mirabilis strains which were invasive and urease-positive. The highest intensity of cell-associated crystallization was observed when the number of bacteria within the urothelium remained stable during the time of incubation. These results show that P. mirabilis has an ability to form crystals inside the host cells. Under these conditions bacteria are protected from antibiotic killing, which leads to persistent and recurrent infections. We also suspect that this phenomenon may be an important stage of kidney stones formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2014.04.007DOI Listing

Publication Analysis

Top Keywords

urinary stones
12
host cells
8
presence p mirabilis
8
number bacteria
8
epithelial cells
8
crystallization
6
bacteria
5
cells
5
vitro studies
4
studies epithelium-associated
4

Similar Publications

The negative effects of lead exposure on human health have attracted widespread attention. Our present study focused on assessing the relationship between urinary lead levels (ULL) and the risk of kidney stones in US adults. We used data from NHANES 2007-2018 for this cross-sectional study, where participants had complete data on ULL and kidney stones.

View Article and Find Full Text PDF

Gitelman syndrome with diabetes and kidney stones: A case report.

Medicine (Baltimore)

January 2025

The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.

Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.

View Article and Find Full Text PDF

The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.

View Article and Find Full Text PDF

BACKGROUND Emphysematous urinary tract infections are rare and serious conditions that are often multifactorial in etiology and may be associated with the presence of renal stones. Diagnosis can be made by finding gas within the renal collecting system or parenchyma. However, the radiographic finding of gas within a renal stone is rare and little has been published to describe the significance of this finding, its promoting factors, and management.

View Article and Find Full Text PDF

Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!