Comparative study of directional differentiation of human and mouse embryonic stem cells into cardiomyocytes.

Cell Biol Int

Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijin Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, P.R. China.

Published: October 2014

This comparative study investigates the method, efficiency, and anti-hypoxic ability of cardiomyocytes, directionally induced from human (h) and mouse (m) embryonic stem cells (ESCs). hESCs were induced into cardiomyocytes by suspension culture, without inducers, or adherent culture using the inducers activin A and BMP4. mESCs were induced into cardiomyocytes by hanging-drop method, without inducers or induced with vitamin C. All four methods successfully induced ESCs to differentiate into cardiomyocytes. There was a significant difference between groups with and without inducers. A significant difference was found between mESC and hESC groups with inducers. The average beating frequency of cardiomyocytes differentiated from hESC was lower than cardiomyocytes differentiated from mESC, while the average beating frequency of cardiomyocytes differentiated from the same cell line, despite different culture methods, did not differ. Beating cardiomyocytes of each group were positive for cTnT staining. Spontaneous action potentials of beating cardiomyocytes were detected by patch-clamp experiments in each group. Different apoptotic ratios were detected in beating cardiomyocytes in each group and the difference between cardiomyocytes induced from mESCs and hESCs was statistically significant. The differentiation efficiencies in the groups without inducers were significantly higher than those without inducers. The induction of mESCs was more simple and efficient compared with hESCs. Without the presence of other protective factors, the anti-hypoxic ability of cardiomyocytes induced from hESCs was stronger and the beating times were longer in vitro compared with mESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10302DOI Listing

Publication Analysis

Top Keywords

cardiomyocytes
13
groups inducers
12
cardiomyocytes differentiated
12
beating cardiomyocytes
12
comparative study
8
human mouse
8
mouse embryonic
8
embryonic stem
8
stem cells
8
anti-hypoxic ability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!