Rapid and extensive alteration of phosphorus speciation during oxic storage of wet sediment samples.

PLoS One

Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands.

Published: June 2015

The chemical forms of phosphorus (P) in sediments are routinely measured in studies of P in modern and ancient marine environments. However, samples for such analyses are often exposed to atmospheric oxygen during storage and handling. Recent work suggests that long-term exposure of pyrite-bearing sediments can lead to a decline in apatite P and an increase in ferric Fe-bound P. Here, we report on alterations in P speciation in reducing modern Baltic Sea sediments that we deliberately exposed to atmospheric oxygen for a period of either one week or one year. During oxidation of the sediment, extensive changes occurred in all measured P reservoirs. Exchangeable P all but disappeared during the first week of exposure, likely reflecting adsorption of porewater PO4 by Fe(III) (oxyhydr)oxides (i.e. ferric Fe-bound P formation). Detrital and organic P were also rapidly affected: decreases in both reservoirs were already observed after the first week of exposure to atmospheric oxygen. This was likely because of acidic dissolution of detrital apatite and oxidation of organic matter, respectively. These processes produced dissolved PO4 that was then scavenged by Fe(III) (oxyhydr)oxides. Interestingly, P in authigenic calcium phosphates (i.e. apatite: authigenic Ca-P) remained unaffected after the first week of exposure, which we attributed to the shielding effect of microfossils in which authigenic Ca-P occurs in Baltic Sea sediments. This effect was transient; a marked decrease in the authigenic Ca-P pool was observed in the sediments after one year of exposure to oxygen. In summary, we show that handling and storage of wet sediments under oxic conditions can lead to rapid and extensive alteration of the original sediment P speciation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011856PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096859PLOS

Publication Analysis

Top Keywords

atmospheric oxygen
12
week exposure
12
authigenic ca-p
12
rapid extensive
8
extensive alteration
8
storage wet
8
exposed atmospheric
8
ferric fe-bound
8
baltic sea
8
sea sediments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!