Several transcription factors (TFs) have been implicated in neuroectoderm (NE) development, and recently, the TF PAX6 was shown to be critical for human NE specification. However, microRNA networks regulating human NE development have been poorly documented. We hypothesized that microRNAs activated by PAX6 should promote NE development. Using a genomics approach, we identified PAX6 binding sites and active enhancers genome-wide in an in vitro model of human NE development that was based on neural differentiation of human embryonic stem cells (hESC). PAX6 binding to active enhancers was found in the proximity of several microRNAs, including hsa-miR-135b. MiR-135b was activated during NE development, and ectopic expression of miR-135b in hESC promoted differentiation toward NE. MiR-135b promotes neural conversion by targeting components of the TGF-β and BMP signaling pathways, thereby inhibiting differentiation into alternate developmental lineages. Our results demonstrate a novel TF-miRNA module that is activated during human neuroectoderm development and promotes the irreversible fate specification of human pluripotent cells toward the neural lineage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198029 | PMC |
http://dx.doi.org/10.1002/embj.201387215 | DOI Listing |
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The accumulation of abnormal tau protein in neurons and glia in the human brain is the defining feature of neurodegenerative diseases known as tauopathies. Progressive supranuclear palsy (PSP), the most common primary tauopathy, is typified by selective vulnerability of dopaminergic neurons and glia in the midbrain leading to an atypical parkinsonian movement disorder. To investigate candidate disease mechanisms underlying PSP, there is a critical need for model systems that more accurately recapitulate the cellular and molecular environment in the human brain.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
The two-dimensional (2D) irregular packing problem is a combinatorial optimization problem with NP-complete characteristics, which is common in the production process of clothing, ships, and plate metals. The classic packing solution is a hybrid algorithm based on heuristic positioning and meta-heuristic sequencing, which has the problems of complex solving rules and high time cost. In this study, the similarity measurement method based on the twin neural network model is used to evaluate the similarity of pieces in the source task and the target task.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
December 2024
Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences, Kalyani, NH-34 Connector, Basantapur, Saguna, Nadia, Kalyani, West Bengal, 741245, India.
Objective: Clinicopathologic illustration of sinonasal teratocarcinosarcoma (SNTCS) in a middle-aged man, highlighting the difficulties and challenges encountered during surgical intervention, histopathologic diagnosis, and its overall management.
Methodology: Case report and literature review.
Results: A 40-year-old man having recurrent epistaxis for three months presented with a dark-colored protruding polypoid nasal mass.
J Neurosci
December 2024
Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.
View Article and Find Full Text PDFNeural Regen Res
November 2025
Department of Neuroscience, Ohio State University, Columbus, OH, USA.
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!