Antimicrobial peptides (AMPs) are multifunctional compounds that may show antimicrobial and immunomodulatory activities. With the rapid increase in the incidence of multidrug-resistant bacteria, there is an enormous interest in AMPs as templates for the production of new antibiotics. However, there are concerns that the therapeutic administration of AMPs can select resistant strains. In order to distinguish between resistant and non-resistant strains and verify resistance specificity to AMPs, in this study a magainin I-resistant Escherichia coli model was used. First, the identity of all strains was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-MS, VITEK 2 and MicroScan, and the susceptible and magainin-resistant strains were successfully differentiated by MALDI-TOF-MS analysis. Furthermore, cross-resistances to a broad spectrum of antibiotics were evaluated, showing that all E. coli strains are susceptible to the drugs tested, suggesting that the resistance seems to be specific to AMPs. Finally, the specific resistance to magainin I compared with other AMPs was checked by microdilution. This experiment showed that the magainin MICs were 62 and 104 μM for susceptible and resistant strains, respectively. The other AMPs MICs were 3.4 μM to proline-arginine-rich 39-amino-acid peptide, 43 μM to porcine myeloid antimicrobial 23-amino-acid peptide-23 and 1.2 μM to cecropin P1 for all strains, demonstrating any additional resistance to peptides here evaluated, confirming that the resistance seems to be essentially specific to magainin I. In summary, the data reported here reinforce the proposal that magainin I seems not to be merely a membrane disruptor, probably showing additional molecular targets in pathogenic bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ja.2014.48 | DOI Listing |
PeerJ
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand.
Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .
Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.
Plant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFFood Chem
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .
View Article and Find Full Text PDFMar Drugs
November 2024
Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China.
Crustins are a family of antimicrobial peptides (AMPs) that play a pivotal role in the innate immune system of crustaceans. The discovery of novel AMPs from natural sources is crucial for expanding our current database of these peptides. Here, we identified and characterized a novel member of the crustin family, named Crus-SWD1, derived from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!