Methionine oxidation in albumin by fine haze particulate matter: an in vitro and in vivo study.

J Hazard Mater

School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan. Electronic address:

Published: June 2014

The potential effects of inhaled fine particulate matter (PM2.5), found in haze episodes, on the oxidation of the proteins in the lungs are not well understood. We investigated the effects of PM2.5 from haze episodes on protein oxidation. PM2.5 was collected from the air pollution in Beijing (BJ), Xian (XA), Xiamen (XM) and Hong Kong (HK) during a period of intensive haze episodes. The chemical characteristics of these samples and their effects on albumin oxidation were investigated. The levels of PM2.5 in BJ and XA were 4-6 times higher than in XM and HK. The concentrations of the polycyclic aromatic hydrocarbons (PAHs) components of the PM2.5 from BJ and XA were 10 times higher than those found in XM and HK. The haze PM2.5 increased oxidative stress. Addition of PM2.5 samples collected from haze episodes to albumin in vitro resulted in oxidation of methionine moieties; nasal instillation of PM2.5 suspensions in mice resulted in oxidation of methionine in the albumin in the bronchoalveolar lavage fluid. The methionine moieties participate in peptide chain crosslinking, and methionine oxidation in the albumin could be attributed to the PAH compounds. Our findings may be helpful in explaining the potential respiratory effects during haze episodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2014.04.029DOI Listing

Publication Analysis

Top Keywords

haze episodes
20
methionine oxidation
8
oxidation albumin
8
particulate matter
8
pm25
8
pm25 haze
8
times higher
8
oxidation methionine
8
methionine moieties
8
haze
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!