A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy. | LitMetric

Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy.

Protein Cell

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Published: June 2014

Our previous studies indicate that phosphatidylinositol 4-kinase IIα can promote the growth of multi-malignant tumors via HER-2/PI3K and MAPK pathways. However, the molecular mechanisms of this pathway and its potential for clinical application remain unknown. In this study, we found that PI4KIIα could be an ideal combinatorial target for EGFR treatment via regulating EGFR degradation. Results showed that PI4KIIα knockdown reduced EGFR protein level, and the expression of PI4KIIα shows a strong correlation with EGFR in human breast cancer tissues (r = 0.77, P < 0.01). PI4KIIα knockdown greatly prolonged the effects and decreased the effective dosage of AG-1478, a specific inhibitor of EGFR. In addition, it significantly enhanced AG1478-induced inhibition of tumor cell survival and strengthened the effect of the EGFR-targeting anti-cancer drug Iressa in xenograft tumor models. Mechanistically, we found that PI4KIIα suppression increased EGFR ligand-independent degradation. Quantitative proteomic analysis by stable isotope labeling with amino acids in cell culture (SILAC) and LC-MS/MS suggested that HSP90 mediated the effect of PI4KIIα on EGFR. Furthermore, we found that combined inhibition of PI4KIIα and EGFR suppressed both PI3K/AKT and MAPK/ERK pathways, and resulted in downregulation of multiple oncogenes like PRDX2, FASN, MTA2, ultimately leading to suppression of tumor growth. Therefore, we conclude that combined inhibition of PI4KIIα and EGFR exerts a multiple anti-tumor effect. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα presents a novel strategy to combat EGFR-dependent tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026421PMC
http://dx.doi.org/10.1007/s13238-014-0055-yDOI Listing

Publication Analysis

Top Keywords

egfr protein
12
pi4kiiα egfr
12
egfr
11
pi4kiiα
10
dual inhibition
8
inhibition egfr
8
protein activity
8
activity level
8
level combinatorial
8
combinatorial blocking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!