This study examined the effects of metabotropic glutamate receptor 6 (mGluR6) deficiency on ribbon synapse formation in rod spherules and cone pedicles using serial-section electron microscopy. In a wild-type (WT) mouse, only 3% of spherules had one invaginating bipolar dendrite (1B-type) and 97% of spherules were 2B-type. In contrast, in an mGluR6-knockout (KO) mouse, 29% of spherules were 1B-type and 71% of spherules were 2B-type. Spherules without bipolar invagination were not observed in either genotype. The single invaginating dendrites in 1B-type spherules were larger and the surface areas of synaptic ribbons were 23% smaller in the mGluR6-KO mouse than in the WT mouse. In cones, the number of invaginating bipolar dendrites decreased from 12 in the WT mouse to 9.5 in the mGluR6-KO mouse. This decrease correlated with a decrease in the number of cone synaptic ribbons from 10 in the WT mouse to 8 in the mGluR6-KO mouse. The mGluR6-KO phenotype showed negative effects on ribbon synapse formation. This negativity was similar to those in mGluR6-nob4, Gβ3-KO, Gβ5-KO, and RGS-7:RGS-11 double-KO mice, but the detailed manners and degrees of alterations appeared to vary depending on different missing components. Two published morphological assessments of the RGS-7:RGS-11 double-KO phenotype reported conflicting data; therefore, we tested the statistical techniques used in the two analyses. One statistical evaluation measure was effective in identifying a significant difference in structure between the mutant and WT phenotypes, whereas the other measure was ineffective. Conventional random section analysis using the effective measure provided sufficient data for a statistical test of the occurrence of structural changes. However, serial section analysis was required to determine the absolute numbers of ribbons and invaginating dendrites and to estimate structural parameters such as ribbon surface area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0952523813000473 | DOI Listing |
Methods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFElife
December 2024
Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.
View Article and Find Full Text PDFHear Res
December 2024
Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate.
View Article and Find Full Text PDFNeurosci Bull
December 2024
Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!