The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10̄10) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanoplates toward ethanol is two times higher than that of the ZnO nanorods, at an optimum operating temperature of 300 °C. This could be attributed to the higher surface area and the exposed (0001) crystal surfaces. DFT (Density Functional Theory) simulations were carried out to study the adsorption of ethanol on the ZnO crystal planes such as (0001), (10̄10), and (11̄20) with adsorbed O(-) ions. The results reveal that the exposed (0001) planes of the ZnO nanoplates promote better ethanol adsorption by interacting with the surface oxygen p (O2p) orbitals and stretching the O-H bond to lower the adsorption energy, leading to the sensitivity enhancement of the nanoplates. These findings will be useful for the fabrication of metal oxide nanostructures with specifically exposed crystal surfaces for improved gas-sensing and/or catalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp01279hDOI Listing

Publication Analysis

Top Keywords

exposed 0001
12
crystal surfaces
12
zinc oxide
8
oxide nanostructures
8
metal oxide
8
0001 10̄10
8
zno nanoplates
8
crystal
6
exposed
5
zno
5

Similar Publications

A two-step, biocompatible strategy enables site-specific generation of branched and macrocyclic peptide-protein conjugates. Solvent-exposed cysteines on proteins are modified by a small bifunctional reagent at near-physiological pH, followed by cyanopyridine-aminothiol click reactions to create branched or macrocyclic peptide architectures. This method offers design strategies for next-generation protein therapeutics.

View Article and Find Full Text PDF

Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.

View Article and Find Full Text PDF

Background: Despite the increased interest from researchers in Postpartum depression (PPD) globally, related studies are limited in Palestine and do not provide a comprehensive understanding of PPD.

Objective: We examined the factors that determine post-partum depression among Palestinian mothers in Hebron governorate.

Methods: A cross-sectional study was conducted in 122 governmental primary healthcare clinics in Hebron Governorate.

View Article and Find Full Text PDF

Risk factors for silicotuberculosis among miners: a scoping review.

BMC Public Health

January 2025

Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, 1107 2020, Lebanon.

Background: Miners exposed to silica dust are susceptible to silicotuberculosis (STB) outcome - the development of tuberculosis (TB) in miners with silicosis. STB is an important occupational and public health issue in the twenty-first century. This scoping review aimed to map the risk factors associated with STB.

View Article and Find Full Text PDF

Introduction: Climate change is shaping adolescent and young people's (AYP) transitions to adulthood with significant and often compounding effects on their physical and mental health. The climate crisis is an intergenerational inequity, with the current generation of young people exposed to more climate events over their lifetime than any previous one. Despite this injustice, research and policy to date lacks AYP's perspectives and active engagement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!