The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP. This finding indicates that both soluble derivatives contain all or part of the beta AP sequence, and it suggests that one or both of these forms may be the immediate precursor of the amyloid deposited in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(89)91052-8DOI Listing

Publication Analysis

Top Keywords

soluble derivatives
12
beta amyloid
12
amyloid protein
12
beta app
12
beta
9
derivatives beta
8
protein precursor
8
alzheimer's disease
8
labeled antisera
8
antisera beta
8

Similar Publications

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives.

Front Bioeng Biotechnol

January 2025

Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany.

Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is a highly lethal malignancy with rapid progression and poor prognosis. Despite the widespread use of gemcitabine (Gem)-based chemotherapy as the first-line treatment for PC, its efficacy is often compromised by significant drug resistance. 1,2,3,4,6-Pentagaloyl glucose (PGG), a natural polyphenol, has demonstrated potential in sensitizing PC cells to Gem.

View Article and Find Full Text PDF

Expression of kiwifruit-derived actinidin in leaves.

Front Plant Sci

January 2025

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea.

Kiwifruit ()-derived actinidin, a cysteine protease, is renowned for its meat-tenderizing and milk-clotting activities. Despite its potential in various biotechnological applications, an efficient expression platform for actinidin production has not yet been developed. Instead, actinidin has traditionally been purified directly from the fruits of various plants.

View Article and Find Full Text PDF

Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!