Effect of the guide strand 3'-end structure on the gene-silencing potency of asymmetric siRNA.

Biochem J

*Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Published: August 2014

siRNAs are short dsRNAs that mediate efficient target gene silencing in a sequence-specific manner. We previously developed a novel siRNA structure, called asiRNA (asymmetric siRNA), which alleviates the off-target effects associated with conventional siRNA structures without decreasing target gene silencing potency. In the present study, we explored the effect of the guide strand 3'-end structure on the gene silencing potency of asiRNA. Interestingly, asiRNAs with a 21 nt guide strand solely composed of RNA resulted in gene silencing that was more than 6-fold more efficient compared with the corresponding asiRNA guide strand harbouring a dTdT (deoxythymidine dinucleotide) at its 3'-end. We demonstrated that the molecular basis of potency of the asiRNA with a 21 nt guide strand composed solely of RNA was due to the enhanced formation of the RISC (RNA-induced silencing complex) and increased affinity towards hAgo2 (human Argonaute2). Our observations may assist researchers in designing new asiRNAs with high on-target silencing efficiency with low off-target effects, which is critical for applications in both basic research and therapeutic development.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20140407DOI Listing

Publication Analysis

Top Keywords

guide strand
20
gene silencing
16
strand 3'-end
8
3'-end structure
8
asymmetric sirna
8
target gene
8
off-target effects
8
silencing potency
8
potency asirna
8
21 nt guide
8

Similar Publications

Low-level viraemia (LLV) following antiretroviral therapy (ART) in people living with HIV (PLWH) has not received sufficient attention. To the determine the prevalence of LLV and its association with virological failure (VF), we systematically reviewed evidence-based interventions for PLWH. We searched PubMed, the Cochrane Library, Embase, and Web of Science from inception to 22 May 2024.

View Article and Find Full Text PDF

Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.

View Article and Find Full Text PDF

Effect of needle size on outcomes of vacuum-assisted excision of breast lesions. A randomized controlled trial.

Eur J Radiol

December 2024

Department of Radiology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.

Background: Utilizing a larger needle-size instead of a smaller one in vacuum-assisted excision of breast lesions might enhance the effectiveness of the method. We conducted a clinical trial to investigate the effects of needle size 7G compared to 10G regarding excision completeness and procedural efficiency.

Materials And Methods: In this prospective, single-blinded, randomized clinical trial, the patients were enrolled between November 2019 and August 2022.

View Article and Find Full Text PDF

The Mre11 complex comprises Mre11, Rad50 and Nbs1 (Xrs2 in ). The core components, Mre11 and Rad50 are highly conserved, with readily identifiable orthologs in all clades of life, whereas Nbs1/Xrs2 are present only in eukaryotes. In eukaryotes, the complex is integral to the DNA damage response, acting in DNA double strand break (DSB) detection and repair, and the activation of DNA damage signaling.

View Article and Find Full Text PDF

Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris.

Microb Biotechnol

December 2024

Departamento de Química Biológica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!