Rich-club organization of the newborn human brain.

Proc Natl Acad Sci U S A

Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, United Kingdom;

Published: May 2014

Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a "rich club"--a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical-subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034228PMC
http://dx.doi.org/10.1073/pnas.1324118111DOI Listing

Publication Analysis

Top Keywords

rich-club organization
8
human brain
8
cortical hubs
8
rich club
8
preterm infants
8
network
5
organization newborn
4
newborn human
4
brain
4
brain combining
4

Similar Publications

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological organization. We combine the developing Human Connectome Project's large infant dataset with generative network modeling to simulate the emergence of network organization over early development.

View Article and Find Full Text PDF

The connectome describes the complete set of synaptic contacts through which neurons communicate. While the architecture of the connectome has been extensively characterized, much less is known about the organization of causal signaling networks arising from functional interactions between neurons. Understanding how effective communication pathways relate to or diverge from the underlying structure is a central question in neuroscience.

View Article and Find Full Text PDF

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways.

View Article and Find Full Text PDF

Identifying influential nodes in brain networks via self-supervised graph-transformer.

Comput Biol Med

December 2024

Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China. Electronic address:

Background: Studying influential nodes (I-nodes) in brain networks is of great significance in the field of brain imaging. Most existing studies consider brain connectivity hubs as I-nodes such as the regions of high centrality or rich-club organization. However, this approach relies heavily on prior knowledge from graph theory, which may overlook the intrinsic characteristics of the brain network, especially when its architecture is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!