Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

Food Chem

KU Leuven Kulak, Research Unit Food & Lipids, Department of Molecular and Microbial Systems Kulak, Leuven Food Science and Nutrition Research Centre (LFoRCe), Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Published: October 2014

The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.03.087DOI Listing

Publication Analysis

Top Keywords

microalgae oils
16
omega-3 long
12
long chain
12
chain polyunsaturated
12
polyunsaturated fatty
12
fatty acids
12
fish oil
12
alternative fish
8
intake sterols
8
microalgae
6

Similar Publications

The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .

View Article and Find Full Text PDF

Microalga presents a promising source of high-value food ingredients such as protein, omega-3 fatty acids, and vitamins. To fully unlock its potential, a thorough understanding of how cultivation conditions affect both growth and the nutritional composition is required. Hence, this study aimed to test and model the effects of temperature, light intensity, and salinity on biomass productivity and the final contents of protein, eicosapentaenoic acid (EPA), and vitamin K using response surface methodology (RSM).

View Article and Find Full Text PDF

Chlorella and vegetable oil inclusion in diets for growing rabbits: effects on growth, digestibility, plasma metabolites, and caecal fermentations and microbiota.

Animal

December 2024

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.

The inclusion of microalgae in livestock diets has been shown to enhance animal productivity, immune response, and meat quality. However, the role of chlorella (Chlorella vulgaris) in growing rabbit nutrition has been scarcely explored, with available studies focusing on low inclusion levels (<1%) and their effects on rabbit growth and immune response. This study evaluated the growth performance, nutrient digestibility, plasma metabolites, caecal fermentative activity, and caecal microbiota composition of growing rabbits fed diets with different inclusion levels of chlorella and crude fat.

View Article and Find Full Text PDF

The current study investigated the enhancement of biomass in S. obliquus, using rice bran oil processing (RBOP) wastewater in different RBOP wastewater concentrations, while also aiming to produce biofuel and treat the wastewater simultaneously. The strain was grown in Blue Green-11 (BG11) media as well as RBOP wastewater at different wastewater concentrations with distilled water at 10%, 25%, 50%, 75%, and 100% under controlled experimental settings.

View Article and Find Full Text PDF

The use of microalgae as a feedstock in biofuel production is highly encouraging. The marine diatom in this study, Thalassiosira pseudonana, was used as a test organism to evaluate the impact of nitrogen or phosphorus limitation and sewage water on improving biodiesel production. The growth rate is more affected in cultures without phosphorus by 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!