A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models. | LitMetric

Aims: Cardiac unipolar electrode stimulations induce a particular structure of the transmembrane potential distribution (Vm), called virtual electrode polarization (VEP), which plays an important role in the mechanisms of cardiac excitation, reentry induction, and ventricular defibrillation. Recent experimental studies, based on the optical mapping techniques, have shown that premature stimulations also induce significant changes in the intracellular calcium (Cai) spatial distribution. The aim of this work is to investigate and compare by means of numerical simulations the morphology of the Vm and Cai patterns, generated by applying an S1-S2 stimulation protocol with a premature S2 anodal pulse.

Methods And Results: We perform parallel finite element simulations of a three-dimensional orthotropic Bidomain model on a block of ventricular tissue by using four membrane models of two species (guinea pig and rabbit), that incorporate the phenomenological or more detailed mechanistic descriptions of the calcium dynamics. During the S2 anodal stimulus, the Cai spatial distribution, computed with all the considered models, presents a configuration similar to the typical VEP pattern of Vm, with a minimum inside the virtual anode and two maxima in the virtual cathodes. After the S2 stimulus turns off, the anode break excitation mechanism yields a Vm pattern exhibiting a clearly propagating wavefront. Differently, the Cai patterns do not show a clear separation between the resting and the activated regions, with the exception of one of the phenomenological models considered, but they show warped dog-bone shaped equi-level lines around an elevation in the virtual anode region.

Conclusion: The VEP pattern of the Cai spatial distribution during the S2 stimulus is in agreement with the previous experimental studies. Moreover, the Cai minimum in the virtual anode can be mainly attributable to the outflow of calcium ions produced by the sodium-calcium (NCX) exchanger, without a significant contribution of the ICaL current.

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euu010DOI Listing

Publication Analysis

Top Keywords

cai spatial
12
spatial distribution
12
virtual anode
12
premature anodal
8
transmembrane potential
8
intracellular calcium
8
stimulations induce
8
experimental studies
8
cai patterns
8
vep pattern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!