Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a survey on cyanobacterial blooms and studied three ponds in detail. Among 3,500 urban ponds in the urbanized Dutch province of North Brabant, 125 showed cyanobacterial blooms in the period 2009-2012. This covered 79% of all locations registered for cyanobacterial blooms, despite the fact that urban ponds comprise only 11% of the area of surface water in North Brabant. Dominant bloom-forming genera in urban ponds were Microcystis, Anabaena and Planktothrix. In the three ponds selected for further study, the microcystin concentration of the water peaked at 77 μg l(-1) and in scums at 64,000 μg l(-1), which is considered highly toxic. Microcystin-RR and microcystin-LR were the most prevalent variants in these waters and in scums. Cyanobacterial chlorophyll-a peaked in August with concentrations up to 962 μg l(-1) outside of scums. The ponds were highly eutrophic with mean total phosphorus concentrations between 0.16 and 0.44 mg l(-1), and the sediments were rich in potential releasable phosphorus. High fish stocks dominated by carp lead to bioturbation, which also favours blooms. As urban ponds in North Brabant, and likely in other regions, regularly suffer from cyanobacterial blooms and citizens may easily have contact with the water and may ingest cyanobacterial material during recreational activities, particularly swimming, control of health risk is of importance. Monitoring of cyanobacteria and cyanobacterial toxins in urban ponds is a first step to control health risks. Mitigation strategies should focus on external sources of eutrophication and consider the effect of sediment P release and bioturbation by fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-2948-y | DOI Listing |
J Environ Manage
January 2025
Department of Soil, Water, and Ecosystem Sciences, University of Florida | IFAS, Gainesville, FL 32611, USA.
Stormwater ponds (SWPs) are an increasingly common management tool for flood control and water quality protection in urban areas. They are designed to buffer the impacts to downstream environments caused by altered hydrologic, chemical, biological, and ecological processes in developed watersheds. While small in size, they can have disproportionately large impacts on watersheds because they store, transform, and release inputs of carbon (C) and nutrients, mainly nitrogen (N) and phosphorus (P).
View Article and Find Full Text PDFJ Med Entomol
December 2024
Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.
Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades.
View Article and Find Full Text PDFSci Total Environ
January 2025
CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain.
This study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Zhejiang Academy of Forestry, Hangzhou 310023, China.
, a perennial emergent herb, is highly valued for its ornamental appeal, water purification ability, and medicinal properties. However, there is a significant contradiction between the rapidly increasing demand for and the diminishing wild resources. Understanding its geographical distribution and the influence of global climate change on its geographical distribution is imperative for establishing a theoretical framework for the conservation of natural resources and the expansion of its cultivation.
View Article and Find Full Text PDFCurr Zool
December 2024
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
Ongoing wind energy developments play a key role in mitigating the global effects of climate change and the energy crisis; however, they have complex ecological consequences for many flying animals. The Yellow Sea coast is considered as an ecological bottleneck for migratory waterbirds along the East Asian-Australasian flyway (EAAF), and is also an important wind farm base in China. However, the effects of large-scale onshore wind farms along the EAAF on multidimensional waterbird diversity, and how to mitigate these effects, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!