Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: RET/PTC rearrangement, RAS, and BRAF mutations are considered to be mutually exclusive in papillary thyroid carcinoma (PTC). However, although concomitant mutations of RET/PTC, RAS, or BRAF have been reported recently, their significance for tumor progression and survival remains unclear. We sought to examine the prognostic value of concomitant mutations in PTC.
Methods: We investigated 88 PTC for concomitant mutations. Mutation in BRAF exon 15, KRAS, NRAS, and HRAS were studied by polymerase chain reaction (PCR)-sequencing of tumor DNA; RET/PTC rearrangement was determined by reverse transcription (RT)-PCR-sequencing of tumor cDNA.
Results: BRAF(V600E) was detected in 39 of 82 classic PTC (CPTC) and in all three tall-cell variants (49%, 42/85). KRAS mutation (p.Q61R and p.S65N) was detected in two CPTC (2%, 2/88) and NRAS(Q61R) in one CPTC and two follicular variant PTC (FVPTC; 3%, 3/88). KRAS(S65N) was identified for the first time in thyroid cancer and could activate mitogen-associated protein kinase (MAPK). RET/PTC-1 was detected in nine CPTC, one tall-cell variant, and two FVPTC. Concomitant BRAF(V600E) and KRAS, or BRAF(V600E) and RET/PTC-1 mutations were found in two CPTC, and six CPTC and one tall-cell variant, respectively. In total, 11 concomitant mutations were found in 88 PTC samples (13%), and most of them were in the advanced stage of disease (8/11, 73%; p<0.01).
Conclusions: Our data show that concomitant mutations are a frequent event in advanced PTC and are associated with poor prognosis. The concomitant mutations may represent intratumor heterogeneity and could exert a gene dosage effect to promote disease progression. KRAS(S65N) can constitutively activate the MAPK pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106383 | PMC |
http://dx.doi.org/10.1089/thy.2013.0610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!