Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.

PLoS One

Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.

Published: January 2015

Background: Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.

Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents.

Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.

Results: Ca2+ currents (CACNA1c+CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both).

Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010514PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096691PLOS

Publication Analysis

Top Keywords

apamin inhibit
16
major currents
12
ca2+ currents
12
pa/pf p = ns
12
apamin
11
pa/pf
9
inhibit human
8
human cardiac
8
cardiac na+
8
l-type ca2+
8

Similar Publications

Chronotropic effects of milrinone in a guinea pig ex vivo model: a pilot study to screen for new mechanisms of action.

J Cardiovasc Pharmacol

January 2025

Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Positive inotropic responses upon administration of milrinone, an inhibitor of the phosphodiesterase enzyme (PDE), involve a well-pronounced positive chronotropic effect. Here we tested whether milrinone evokes this chronotropic response solely by PDE inhibition or by a concerted action that involve additional pharmacological targets. Milrinone stimulated increases in heart rate were studied in right atrial preparations of guinea pig in the presence or absence of inhibitors of putative ancillary molecular pathways or ion channels: i.

View Article and Find Full Text PDF

K currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice.

Am J Physiol Heart Circ Physiol

December 2024

Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.

Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated a role of cardiac K channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the gene (Calm1).

View Article and Find Full Text PDF
Article Synopsis
  • Apigenin, a flavonoid thought to benefit cardiovascular health, was studied for its effects on vascular function in Spontaneously Hypertensive Rats (SHRs) to understand its mechanisms of action.
  • Vascular beds from SHRs were tested with varying doses of apigenin, showing that its ability to lower blood pressure depended on the presence of endothelial cells and was significantly reduced by inhibitors of nitric oxide and potassium channels.
  • The research concluded that apigenin causes vasodilation primarily through endothelial nitric oxide and calcium-activated potassium channels, suggesting its potential for therapeutic use in cardiovascular diseases and the need for more clinical studies.
View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are gaining popularity as potential substitutes for conventional antibiotics and bio-preservatives in response to an increase in antimicrobial resistance cases. However, their poor pharmacokinetic profiles limit their applicability. This study using ADMETlab, OECD QSAR toolbox, and VEGA HUB virtual environments profiled 82 peptide sequences of seven bee antimicrobial peptides (BAMPs: abaecin, apamin, apisimin, apidaecin, defensin, hymenoptaecin, and melittin) using 81 descriptors combining physicochemical, medicinal chemistry, ADMET, and toxicophore criteria.

View Article and Find Full Text PDF

The peristaltic reflex has been a central concept in gastrointestinal motility; however, evidence was published recently suggesting that post-stimulus responses that follow inhibitory neural responses provide the main propulsive force in colonic motility. This new concept was based on experiments on proximal colon where enteric inhibitory neural inputs are mainly nitrergic. However, the nature of inhibitory neural inputs changes from proximal to distal colon where purinergic inhibitory regulation dominates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!