Toluene diisocyanate (TDI) disposition and co-localization of immune cells in hair follicles.

Toxicol Sci

Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505.

Published: August 2014

Diisocyanates (dNCOs) are potent chemical allergens utilized in various industries. It has been proposed that skin exposure to dNCOs produces immune sensitization leading to work-related asthma and allergic disease. We examined dNCOs sensitization by using a dermal murine model of toluene diisocyanate (TDI) exposure to characterize the disposition of TDI in the skin, identify the predominant haptenated proteins, and discern the associated antigen uptake by dendritic cells. Ears of BALB/c mice were dosed once with TDI (0.1% or 4% v/v acetone). Ears and draining lymph nodes (DLNs) were excised at selected time points between 1 h and 15 days post-exposure and were processed for histological, immunohistochemical, and proteomic analyses. Monoclonal antibodies specific for TDI-haptenated protein (TDI-hp) and antibodies to various cell markers were utilized with confocal microscopy to determine co-localization patterns. Histopathological changes were observed following exposure in ear tissue of mice dosed with 4% TDI/acetone. Immunohistochemical staining demonstrated TDI-hp localization in the stratum corneum, hair follicles, and sebaceous glands. TDI-hp were co-localized with CD11b(+) (integrin αM/Mac-1), CD207(+) (langerin), and CD103(+) (integrin αE) cells in the hair follicles and in sebaceous glands. TDI-hp were also identified in the DLN 1 h post-exposure. Cytoskeletal and cuticular keratins along with mouse serum albumin were identified as major haptenated species in the skin. The results of this study demonstrate that the stratum corneum, hair follicles, and associated sebaceous glands in mice are dendritic cell accessible reservoirs for TDI-hp and thus identify a mechanism for immune recognition following epicutaneous exposure to TDI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176049PMC
http://dx.doi.org/10.1093/toxsci/kfu079DOI Listing

Publication Analysis

Top Keywords

hair follicles
16
sebaceous glands
12
toluene diisocyanate
8
diisocyanate tdi
8
cells hair
8
mice dosed
8
stratum corneum
8
corneum hair
8
follicles sebaceous
8
glands tdi-hp
8

Similar Publications

Pathogenesis and regenerative therapy in vitiligo and alopecia areata: focus on hair follicle.

Front Med (Lausanne)

January 2025

Department of Dermatology, Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Vitiligo is an autoimmune disease characterized by the loss of functional melanocytes in the hair follicles and epidermis, leading to white patches on the skin and mucous membranes. Alopecia areata (AA) is a common immune-mediated condition in which autoimmune attack on hair follicles cause non-scarring hair loss. Both diseases significantly impact patients's physical and mental health.

View Article and Find Full Text PDF

A 53-year-old woman undergoing combination therapy with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) inhibitors for advanced lung cancer with brain metastases developed pustules and punctate purpura on both lower extremities. Histopathological examination revealed neutrophilic infiltration around the hair follicles and erythrocyte extravasation in the perivascular regions near the hair roots, leading to a diagnosis of purpuric papulopustular eruptions. The rash improved with oral doxycycline (100 mg/day) and topical corticosteroids.

View Article and Find Full Text PDF

Fetal fibroblast heterogeneity defines dermal architecture during human embryonic skin development.

J Invest Dermatol

January 2025

Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK; Directors' Unit, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany. Electronic address: https://twitter.com/fionamarywatt.

To investigate heterogeneity of fibroblasts in human fetal skin, we analysed published single-cell RNA sequencing data (8 and 16 post conception weeks (PCW)) and performed single-molecule fluorescence in situ hybridisation to map their spatial distribution and predicted dynamic interactions. Clustering revealed 8 fibroblast populations with developmental stage-specific abundance changes. Proliferative cells (MKI67+) were present at all stages.

View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!